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ABSTRACT 

First- and second-order difference approximations to certain partial dif- 
ferential equations of fluid dynamics are investigated for the von Neumann 
necessary condition for stability. The nonsteady equations examined consist 
of advection, diffusion, and inertial terms. Although the general equation 
considered represents no particular atmospheric process, it does have features 
found in many meteorological problems. Five approximations to the diffusion 
equation are studied, three of which are shown to be stable. Two of the three 
approximations to the advection-diffusion equation investigated are found 
to be stable. Twelve approximations to the advection-inertial equation are 
examined; eight are found to be stable and two are found to be slightly 
unstable. One two-step scheme, each step of which is individually stable, is 
shown to be unstable. For the advection-diffusion-inertial equation, 2 two- 
step schemes are formed from the preceding stable schemes. The analysis 
shows that such combinations are not necessarily stable. 

INTRODUCTION 

The increasing interest in the use of second-order difference equations 
for numerical problems in fluid dynamics has made it desirable to study 
the stability properties of such approximations. Also of interest is the 
stability of more complicated difference schemes of both first- and sec- 
ond-order approximating nonsteady partial differential equations con- 
taining several terms in addition to the time derivative. Such schemes 
arise from the desire to solve systems of partial differential equations 
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appearing, for example, in problems of the general circulation of at- 
mospheres and oceans. These systems of equations often include, among 
others, advection, diffusion, and inertial terms. In this paper a non- 
steady partial differential equation containing these terms is considered, 
which, while not approximating any particular atmospheric process, 
does have characteristics similar to equations of meteorology. Difference 
approximations to various simplifications of this equation are first 
considered, followed by the effect on the stability of combining these 
simplifications for the more general equation. 

Richtmyer [8] has summarized the stability of several difference ap- 
proximations to the advection equation. This summary includes the 
unstable forward difference; the stable diffusing and upstream differenc- 
ing, all first-order-in-time; and the stable second-order-in-time leap 
frog and Lax-Wendroff schemes. Richtmyer [7] has also given the sta- 
bility properties of various first- and second-order approximations to 
the diffusion equation. The following report deals with the von Neu- 
mann necessary condition for stability of some additional first- and 
second-order approximations to the diffusion equation. Several dif- 
ference equations are formed by combining stable schemes for an ad- 
vection term and for a diffusion term, and by combining stable schemes 
for an advection term and for an inertial term in nonsteady equations. 
The stability of these equations is examined. Finally, schemes found 
to be stable are combined into schemes for an advection-diffusion- 
inertial equation and their stability is investigated. 

The equations examined are all derived from the following equations : 

where u and v are eastward and northward velocity components, re- 
spectively; A is the advection speed, $2 0 is the diffusion coefficient, 
and jis the Coriolis parameter given by f = 2Q sin p, with R denoting 
the earth’s angular velocity, and p, latitude. The parameters 2, k, 
and pare all assumed to be constant. Combining (1) and (2) using the 
complex notation w  = u + iv results in the general equation 

dW dW 
7+-J+- 

g SW 
-7g + ijw = 0. (3) 
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The second term of (3) is referred to as the advection term, the third 
as the diffusion term, and the fourth as the inertial term. Although Eq. 
(3) does not represent any particular atmospheric process, it is similar 
in many ways to equations of meteorology, and therefore the study of 
stability of the difference equations is useful. 

I. STABILITY 

It can be shown that the solutions of (3) remain bounded with time. 
Therefore, for a finite-difference approximation of (3) to be called 
numerically stable, its solution should consist of Fourier components 
whose amplitudes do not grow unboundedly with time. We shall call 
a scheme stable if all its Fourier components remain bounded with time, 
and hence unstable if at least one component is not bounded. 

In this paper two types of approximation commonly used in meteoro- 
logy are considered, one with two time levels and one with three. In 
general, one method is not necessarily better than the other. Stability 
calculations for one equation of each type are given below to illustrate 
the method. 

For the two-time-level approximation we consider (3) with 
A =f= 0: 

du 
-zz 

dt 

Kg. (1.1) 

One scheme approximating (1.1) is 

q+l=; (Q,, + Us-,) + R & (U7+1 - 2ug + uq-,). (1.2) 

For the difference schemes examined in this report a rectangular net in 
the x-t plane is used with spacings dx and At. Upper case letters 
are used for the calculated values of the dependent variable, and lJ!j 
denotes the value of U(j kc, n At) for integer and half-integer values 
of j and II. To simplify notation, the following abbreviations are in- 
troduced : 

r;rl = & (Q,, + uq-,) s&y = fr (U?,, - Us-,) 

s,q = uq,,,$ - uq-,,, SgIPj 3 S,(S?pU~). 

crl;ul;: f s,(sy?Jq) (1.3) 
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These abbreviations are also used with U replaced by W. The following 
nondimensional variables are also introduced: 

1 A 
A-AZ 

K&&L!- 
WY 

(1.4) 

f =,f,lt 

It should be remembered that the circumflex indicates a dimensional 
variable, and the absence of a circumflex, a nondimensional variable. 

Using abbreviations (1.3) and (1.4), Eq. (1.2) can be written as 

Substituting a Fourier term U(x, n At) = U” exp (ikx) into (1.5) re- 
sults in 

UWl = Gun = GntlUO, 

where G = cos 01 + 2K (cos cx - 1) and cz = k Ax. G is called the am- 
plification factor. In order for the amplitudes of the Fourier compo- 
nents not to grow unboundedly, G must not exceed unity in absolute 
value. This is essentially the von Neumann necessary condition for a 
damping system.l Hence, the stability condition for (1.2) is 

j cosct + 2K(coscr - l)/ 5 1. 

For cx = 7c and K > 0, / G 1 > 1. Therefore, there are some Fourier 
components which grow and scheme (1.2) is unstable. 

We now consider a three time-level difference approximation to (3) 
for the case I? = 0. 

dW dW 
__ - --=-a dx 

at 
1fW. 

One scheme approximating (1.6) is 

Wq+l = WY-l - 2A6,Wy - 2if W’j. (1.7) 

1 For problems containing a mechanism causing a growth of the true solution, 
a more generous condition that the amplification factor should not exceed 1 + O(dt) 
should be used (e. g., see [7]). 
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Again substituting a Fourier term IV(x, n At) = Wn exp(ikx) into (1.7) 
results in 

Wn+l = GW” + HW?t-1 2 

where G = - 2i(A sin CY + f) and H = 1. Since the identity W” = (1) 
Wn + (0) Wn-l holds, we can write Wn+l = MW”, where 

Wn 
wn = ( 1 wn-1 

and 

M is called the amplification matrix of the vector W”. In this case, the 
von Neumann necessary condition for stability is that the eigenvalues 
of M do not exceed unity in magnitude. If we denote by A,,, the two 
eigenvalues of M, then 

A,,, = - iB & (- B2 + 1)1’2, 

where B = A sin 01 + f. If ) B 1 > 1, the radical is imaginary and one 
of the eigenvalues exceeds unity in absolute value. However, if 1 B 1 L 1, 
the radical is real and 1 h,, ] = 1. Thus, scheme (1.7) is stable if 

- ‘4t 
IA’ dx -++4dtIl or IAl+fSl. 

For a few difference equations stability conditions such as the above 
are not easily found analytically. In these cases, the eigenvalues of the 
amplification matrix are calculated for various values of A, K, and f, 
and a graph showing the domain of stability is constructed. 

II. TRUNCATION ERROR 

Truncation error has been defined several ways by different authors. 
Henrici [l], for example, defines it to be the difference between the 
exact solution of the differential equation and the exact solution of the 
difference equation. In this paper, we will use the definition of Richtmyer 
[7] dealing directly with the difference and differential equations them- 
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selves rather than with their solutions. The truncation error of (1.7) 
approximating (1.6) is calculated as an example. 

The truncation error, e, of (I .7) in calculating the value of W!j+l is 
defined to be the difference 

aw tifWy- ~ ( aM, 1 ,1 
at +A---- 

ax i,f w . 
1 (2.1) 
i 

Assuming the value of WY is exact and substituting Taylor’s series ex- 
pansions about w’j for W’j+l, WY-l, WY,,, and WY-, into (2.1) results in 

Therefore, the truncation error is written as 

e = O((dt)2) + ~((Ax)~). 

III. DIFFERENCE EQUATIONS 

In general there are many possible difference equations approximat- 
ing any one partial differential equation. In this paper only schemes of 
the type used in meteorological problems are considered. 

A. Diffusion Equation 

Several difference equations approximating the diffusion equation 

au -= 
at 

along with truncation errors, amplification factors or eigenvalues of 
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the amplification matrices, and the stability conditions are summarized 
below. Since the main purpose of this investigation is to find stable dif- 
ference schemes, when an instability is found in a scheme for certain 
Fourier components further investigation is not carried out. Therefore, 
statements such as “unstable for short wavelengths” imply nothing about 
the stability of longer wavelengths. 

G=cosa+2K(cosa- 1). 

This scheme is unstable for short wavelengths with cos CI < - (1 
(I + m. 

e = O(h) + O[(._~X)~] + 0 ___ [ 1 At 

2ii,,, = cos cr f [co3 a + 8K(cos a - 1) ]1’2. 

Scheme (A.2) is stable for K 5 1 /lo. 

U’j”l = U3 + K@U; + $ K2h:U!j 

e = O[(dt)2] + O[(~X)~] 

- 

(A.11 

WI 

(A.21 

64.3) 

G = 1 + 2K(cos CI - 1) - 2K2[sin2cr t 2(cos (Y - I)]. 

The above scheme is stable for K 5 4. Equation (A.3), of the type re- 
ferred to as Lax-Wendroff, is stable for the same values of K as the 
first-order forward difference scheme as given in [7]. 

Uy’2 = TJy f 2&3fQt’ 

e = O[(At)2] + O[(dx)*] 

G= I + 2K(cos2c( - 2cosa + 1) 

+ 4fcycos 2cY - 4 cos CY + 3). 

The two-step scheme (A.4) is unstable for short wavelengths. This 
two-step scheme and those to follow are considered as one difference 
equation for the stability analysis by eliminating the values of U at 
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time (n + I)& from the two equations. In actual practice the two equa- 
tions are used alternately, but the truncation error and stability apply 
only at every second time step. 

Two-step scheme (A.5) is a combination of the stable forward difference 
and the unstable leap frog schemes given in [7]. When the first step is 
substituted into the second, the resulting equation is seen to be the 
Lax-Wendroff type equation (A.3) with time step 211t and space in- 
crement dx. 

B. Advection-Diffusion Equation 

The properties of several difference equations approximating an ad- 
vection-diffusion equation 

are given below. 

Uy+’ = U’j - A6,U’j + 4 A26fUy - AK@(&Uq) 

+ K@U% + 4 KVfU’j 

e = O[(dt)2] + O[(~X)~] 

G=I+(A2+2K-4K2)(coscx-1)-2K2sinzu 
- i[2AK(cosa - 1) + A] sinar. 

(B.1) 

No stability criterion can easily be found analytically for the Lax- 
Wendroff type scheme (B. 1). The domain of stability, as calculated on 
a computer, is shown in Fig. 1. 

U’j+l = i?$ - AB,lJ!j + K@lJ’j (J3.2) 

U’j+2 = lJy - 2A~3,U3’~ + 2K@Uq+1 

e = o[(Llt)2] + o[(Llx)2] 

G=1+A2(~0s2~-1)+2K(~0~2~-2c0~~+1) 

+ 4K2(cos 2cu - 4 cos (Y + 3) 

- i[A sin 2~ + 2AK(2 sin 2a - 4 sin (Y)] 
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0.6 

IAl 
STABLE 

FIG. 1. Domain of stability of scheme (B.l). Stable for 1 A j 5 1, K I i; and 
u<+jz. Stablebelowlines for:a,a=$n;b,or=gn;c,ar=+n; d,a=gn; 
e. a = 3x. 

The above scheme is unstable for short wavelengths when K > 0. The 
stable case, K = 0, has been studied in [S]. 

u>+’ = U’j - 2AB,Vq+1 $ 2KB;U’j 

e = O(h) + O[(AX)~] 

G= 1 -2A2sin2cu+4K(cosu- 1) 

- i[A sin 2c( + 2AK(sin 2a - 2 sin a)] 

Equation (B. 3) is stable for A4 + (4K2 + 4K - 1)A” L 2K - 4P and 
2K 5 4. Figure 2 shows a graph of the stable region. When the first 
equation of (B.3) is substituted into the second, the resulting equation 
is a one-step scheme with time step 2At, and the differences in the ad- 
vection term taken over a grid interval of 2dx while those in the diffusion 
term are taken over a grid interval of 3x. Therefore, A = 2(2At/2Dx) 
and 2K = R(2At/dx) are chosen as coordinates of Fig. 2 to make it 
comparable with the previous results. A similar choice of coordinates 
is made in other schemes. 
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1.0 UNSTABLE 

0.8 - 

lAl0.6- 

0.4 - STABLE 

0.2 
t oo- ‘0.0 0.1 0.2 0.3 0.4 1 

2K 
FIG. 2. Domain of stability of scheme (B. 3). 

C. Advection-Inertial Equation 

Difference schemes approximating an advection-inertial equation 

- ifw 

and their properties are listed below. 

(3x)2 
e = O(A) + O[(L~X)~] + 0 __ [ 1 .It 

G = cos a - i(A sin (x + .f) 

Scheme (C.l) is unstable for very long and short wavelengths. For 
a! = 0 or x, ) G / = (1 +,f2)lj2; and for a=n/2, JGj( IAl+f. 

W’j+l z F - Ad, W’j - if W;tl cc.3 
(Jxj2 

e = O(ilt) + o[(‘!lx)2] + 0 ___ 
[ 1 ._lt 

G(l + if) = cos c1 - iA sin cz. 

This equation is stable for j A j2 5 1 + J’“. As can be seen in the ex- 
pression for G, advancing the time level of the inertial term produces 
a slight damping of the solution. 
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Wyfl = WY - Ad, W’j - i if ( W?+’ + W:) (C.3) 
( AxY e = O(At) + O[(Ax)2] + 0 __ 

[ I At 

G = (1 + 3 if) = cos u - i(A sin (Y + &f). 

Equation (C.3) is stable for 4f 1 A / + 3A2 i 3. 

WY+1 = Wq - AJ,W1;: - if w?tl 

e = O(At) + O[(AX)~] 

G(l + if) = 1 - iA sina. 

(C.4) 

The above equation is stable for 1 A / Cf. For f = 0, the equation is 
unstable, which is well known. For A = 0, the scheme is stable as discus- 
sed by Kurihara [4]. As was seen in (C.2), evaluating the inertial term 
at time level n + 1 produces a damping which counteracts the insta- 
bility of the advection term. In this case the stability condition places 
no restriction on the time increment; however, it does place a lower 
limit on the space increment. When the advection speed A = 30 msec-’ 
and f = 1O-4 set-I, dx must exceed 300 km. This lower limit increases 
as a increases or as f^ decreases. 

W:+l= WY-’ - 2Ad,W?j - 2if WY 

e = O[(At)2] + O[(AX)~] 

(C-5) 

A,,, = - i(A sin o1 + f) + [- (A sin c( +f)” + 1]1/2 

Scheme (C.5) is stable for 1 A ) + f 5 1. This scheme is also discussed 
by Kurihara [4]. 

wy1 = wq-1 - 2A6,Wq - 21j- W;+l (C.6) 

e = O(At) + O[(AX)~] 

(1 + 4f2)1:,2 + 2iAsina(l - 2if)il,,, - (1 - 2if) = 0. 

Equation (C.6) is stable for 1 A 1 <J This is the same condition as 
(C.4). 

Wy+l = W’j-’ - 2AB, W’j - zy (WY+1 + wy1) (C-7) 

e = O[(dt)2] + O[(AX)~] 

&(l + if) = - iA sin 01 f [- A2 sin2 OL + (1 +f2)]‘12. 
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The above scheme is stable for A2 _( 1 +f”. 

Wy+l = WY - A& WY + 4 A26: WY + ifAS, WY 

- ifW7 - if” WC 

e = o[(dt)2] + o[(;x)2] 

(C-8) 

G= 1 + A2(cosa - 1) - Afsina -if” - i(Asincw +f). 

Equation (C.8) is of the Lax-Wendroff type. For f = 0 it is stable when 
/ A 1 < 1 as given in [8]. For A = 0, the equation is slightly unstable 
with 1 G I2 = 1 + 4 f 4; however, for f^= 1O-4 se& and dt = 10 min- 
utes, ten thousand iterations could be performed before the amplitude 
even doubled. 

WY+1 z.z j@ - Ad,W’j - ifW?,j 

W9+2 = Wfj - 2&,W’jfl - 2ifW’$f’ 

e = O[(dt)2] + O[(~X)~] 

G=1+A2(cos2a- I)-4Afsina-2f2 

- i(A sin 2cr + 2fcos cz). 

(C-9) 

This scheme is slightly unstable for both very long and short wavelengths. 
For cz = 0 or X, 1 G I2 = 1 + 4 f 4. Houghton, Kasahara, and Washing- 
ton [2] have calculated the value of (1 + 4f 4)N/2 for various values of 
N and J In particular, for N = 10000, f^= 1O-4 see-‘, and dl = 10 
minutes, (1 + 4f 4)N/2 is 1.2958847. For most problems this amplifi- 
cation is insignificant. The case f = 0 is stable as given in [8]. This 
first step of (C.9) is the unstable scheme (C.l), and the second is the 
stable scheme (C.5). As is seen above, the result of combining the two 
is just slightly unstable. 

WY+1 = @ - Ad, WY - if WY+1 

WY+2 zzz Wfj - 2AJ2W3t1 - 2@749+1 

e = O(b) + O[(AX)~] 

(C. 10) 

G(l + if) = (1 + if) + Aa(cos 2a - 1) - 2fA sin cz 

- i(A sin 2a + 2f cos a) 

For cz = 0 scheme (C. IO) is neutral; however, for CI = z, 1 G I2 is 
of the order (1 + 8f2). The values of (1 + 4f 2)N/2 are also calculated 
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in [2] and significant amplification is shown after 1000 time steps. The 
two steps of (C.10) are the stable schemes (C.2) and (C.5). Surprisingly, 
the resulting two-step scheme is unstable. 

WY+1 = e - Ad,Wa - ifWy+l (C.11) 

W’ji2 = WY - 2Ab, W’jfl - 2if WY+2 
I 

e = O(b) + O[(.AX)~] 

(31 + 2if) (1 + if) = (1 + if) + A2(cos 2a - 1) - iA sina 

Figure 3 shows the stable values of A andf. The one-step equation obtain- 
ed by substituting the first equation of (C.ll) into the second has time 
step 2dt and space increment 2dx. Therefore, the abscissa of Fig. 3 

2f 
0 0.0 0.02 004 

I I 

FIG. 3. Domain of stability of scheme (C.ll). Stable for 1 A 1 I 1,f 5 t, 2a = 0. 
Stable above lines for: a, 2a = $ n; b, 2a = $7~; C, 2a = f  n; d, 2a = f  n; e, 
2a = $7~; f,  2a = f  n; g, 2a = + z. Unstable area decrease as 2a -+ n. 

is chosen to be 2f to make it comparable with the results of the preceed- 
ing one-step schemes. Similar coordinates are used in Fig. 4. Scheme 
(C.ll) is a combination of the stable schemes (C.2) and (C.6), and, as 
is seen in Fig. 3, is stable for certain values of the parameters. 
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w’j+l = j@ - Aa, WY - 4. if( q-1 .I+ jj?i) 

W7+2 = WY - 2A& W?-tl - if( WY+’ + wy 

e = O(h) + o[(Llx)2] 

G(l + if) (1 + fr if) = (1 - (j-f> (1 
- iA(1 - 4 if) sin 2c( 

Figure 4 shows the domain of stability 

A- 4 if, + A”(cos 2a 

of scheme (C.12). 

STABLE 

-0.2 - 

-04 - 

-0.6 - 

UNSTABLE 
-0.6 - 

-1.0 - f 

FIG. 4. Domain of stability of scheme (C.12). Stable for / A 1 I 1, f  5 $, 2cr = 0. 
For A > 0, stable below lines for: a, 2a = $ n; b, 2or = $ n; c, 2a = $ Ed; d, 2a 
=f n;e,2a=~n.ForA<O,stableIeftoflinesfor:f,20!=~n;g,2or=~n; 
h, 2ru = in; i, 2u = f  ?c; j, 2a = 3 z. Unstable area decreases as 2or + z. 

D. Advection-Diffusion-Inertial Equation 

Combining previously examined stable schemes to approximate 

results in the following 2 two-step schemes. Both schemes are first- 
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order in time and second-order in space. Their properties are listed 
below. 

W;+l = Wq - AS,Wy + K@Wg - ifW’j+l (D.1) 

w1l,+2 = WY - 2A6, Wy+l + 2KS;Wq - 2ifW’j+’ 

e = O(At) + O[(AX)~] 

G(l + 4f) (1 + .f’) = (1 + 4f) - 3fA sin 2a + (1 - 2f)A2(cos 2c( - 1) 

- 6fAK(sin 2a - 2 sin cx) + (4 + 16f)K(cos C( - 1) - i[2f+ gf2 

+ (1 - 2f2)A sin 2a + 3fA2(cos 2a - 1) 

f (2 - 4f2)AK(sin 2a - 2 sin a) + (8f+ 32f2)K(cos CY - I)]. 

Stability conditions are not easily found for either (D.l) or (D.2). 
The magnitudes of G for various values of A, K, and f are obtained 
numerically. The domain of stability of equation (D.l) is given in Fig. 5 
for pot equal to .OOl, .006, .06, and .18. When K = 0, (D.l) reduces 
to (C.11). 

4.0 1 

FIG. 5. Domain of stability of scheme @.I). Stable left of lines for: a, fat = .OOl ; 
b, filt = .006; c, fdt = .06; d, fat = .18. For K = 0, (D.l) reduces to (C.ll) 
(Fig. 3). 
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W’j+l = %j - Ad, W? + ES: WY - 3 if ( W’j+l + -i@) CD.3 

WY@ = W?j - 2Ad, Wafl + 2Kr3; W; - if ( W;+2 + WY) 

f? = O(At) + o[(dx)2] 

G(l +f2)(1 + $f2) = 1 - $f2 - if4 + (&f” - $f)Asin2a 

+ (1 - if 2)A2 (cos 2w - 1) - 3fAK(sin 2a - 2 sin cz) 

+ (4 +f”) (cosa - 1) - i[2f+ 4 f 3 + (1 - 2f 2)A sin 2a 

+ Q fA2(cos 2a - 1) + (2 - f 2)AK(sin 2a - 2 sin a) 

+ (4f +f”) tcosa - 111. 

Numerical calculations of G show that scheme (D.2) is unstable for 
short wavelengths (approximately less than 6r3x). The values of fat. 
checked are .006, .06, .18, and .36. When f = 1O-4 set-l these values 
correspond to l-minute, IO-minute, 30-minute, and l-hour time steps, 
respectively. 

IV. CONCLUSIONS 

Twenty-two difference schemes are examined for von Neumann ne- 
cessary condition for stability. All are second-order in space. Both first- 
and second-order time approximations are investigated. 

Of the five approximations to the diffusion equation investigated, two 
are found to be stable for the same values of K as the first-order forward 
difference scheme and one is found to be stable under a more restrinctive 
condition. The remaining two are found to be unstable for short wave- 
lengths. One second-order and one first-order scheme approximating 
the advection-diffusion equation are shown to be stable while the other 
scheme examined is shown to be unstable. Eight one-step and four two- 
step schemes approximating the advection-inertial equation are studied. 
Of these two are found to be slightly unstable with very small amplifi- 
cation after 10000 iterations. Six first-order and two second-order, both 
of leap frog type, schemes are found to be stable. For the advection- 
diffusion-inertial equation, 2 two-step schemes are formed from the 
preceding stable schemes. The analysis shows that such combinations 
are not necessarily stable. 

In general, the difference equations examined are to be applied to 
nonlinear partial differential equations. The stability criteria presented 
here are based on the linear equations with constant coefficients, and 
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may therefore differ from the stability properties of the nonlinear 
equations. It is hoped that some actual computations applying these 
schemes to the nonlinear problems can be performed in the future. 

When stable difference schemes for individual advection, diffusion, 
or inertial terms are combined to approximate partial differential equa- 
tions containing several of these terms, there seems to be no simple 
method to determine the stability of the resulting equation without 
actually calculating the eigenvalues of its amplification matrix. Similarly, 
the stability of a two-step scheme does not seem to be related in any 
obvious way to the stability of each step. In Section III.C, 2 two-step 
schemes are presented each of which consists of two stable one-step 
schemes. However, when these two-step schemes are examined for sta- 
bility, one is found to be stable and the other unstable. These examples 
support Kasahara’s [3] remark that one should examine the stability 
of a complete scheme rather than guess a stability condition inclusive 
of all stability conditions of various simplifications of the complete 
equation. 

The author is indebted to Drs. A. Kasahara, W. Washington, and J. Gary for their 
advice, comments, and explanations during the course of this work; also to Drs. A. 
Kasahara and E. Lorenz for reading the manuscript carefully. 
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